Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nature ; 619(7969): 403-409, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20242865

ABSTRACT

The entry of SARS-CoV-2 into host cells depends on the refolding of the virus-encoded spike protein from a prefusion conformation, which is metastable after cleavage, to a lower-energy stable postfusion conformation1,2. This transition overcomes kinetic barriers for fusion of viral and target cell membranes3,4. Here we report a cryogenic electron microscopy (cryo-EM) structure of the intact postfusion spike in a lipid bilayer that represents the single-membrane product of the fusion reaction. The structure provides structural definition of the functionally critical membrane-interacting segments, including the fusion peptide and transmembrane anchor. The internal fusion peptide forms a hairpin-like wedge that spans almost the entire lipid bilayer and the transmembrane segment wraps around the fusion peptide at the last stage of membrane fusion. These results advance our understanding of the spike protein in a membrane environment and may guide development of intervention strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Cryoelectron Microscopy , Lipid Bilayers , Virus Internalization , Membrane Fusion , Protein Conformation
2.
Science ; 369(6511): 1586-1592, 2020 09 25.
Article in English | MEDLINE | ID: covidwho-2038226

ABSTRACT

Intervention strategies are urgently needed to control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The trimeric viral spike (S) protein catalyzes fusion between viral and target cell membranes to initiate infection. Here, we report two cryo-electron microscopy structures derived from a preparation of the full-length S protein, representing its prefusion (2.9-angstrom resolution) and postfusion (3.0-angstrom resolution) conformations, respectively. The spontaneous transition to the postfusion state is independent of target cells. The prefusion trimer has three receptor-binding domains clamped down by a segment adjacent to the fusion peptide. The postfusion structure is strategically decorated by N-linked glycans, suggesting possible protective roles against host immune responses and harsh external conditions. These findings advance our understanding of SARS-CoV-2 entry and may guide the development of vaccines and therapeutics.


Subject(s)
Host-Pathogen Interactions/immunology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2 , Cryoelectron Microscopy , HEK293 Cells , Humans , Peptidyl-Dipeptidase A/chemistry , Protein Domains , Protein Multimerization , Protein Structure, Secondary , Receptors, Virus/chemistry , Virus Internalization
3.
Am J Obstet Gynecol ; 227(3): 493.e1-493.e7, 2022 09.
Article in English | MEDLINE | ID: covidwho-1872911

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is associated with enhanced disease severity in pregnant women. Despite the potential of COVID-19 vaccines to reduce severe disease, vaccine uptake remained relatively low among pregnant women. Just as coordinated messaging from the Centers for Disease Control and Prevention and leading obstetrics organizations began to increase vaccine confidence in this vulnerable group, the evolution of SARS-CoV-2 variants of concerns, including the Omicron variant, raised new concerns about vaccine efficacy because of their ability to escape vaccine-induced neutralizing antibodies. Early data point to a milder disease course following infection with the Omicron variant in vaccinated individuals. Thus, these data suggest that alternate vaccine-induced immunity beyond neutralization may continue to attenuate Omicron variant-induced disease, such as Fc-mediated antibody activity. OBJECTIVE: This study aimed to test whether vaccine-induced antibodies raised during pregnancy continue to bind to and leverage Fc receptors to protect against variants of concern including the Omicron variant. STUDY DESIGN: The receptor binding domain or whole spike-specific antibody isotype binding titers and Fc gamma receptor binding directed toward variants of concern, including the Omicron variant, were analyzed in pregnant women after receiving the full dose regimen of either the Pfizer/BioNTech BNT62b2 (n=10) or Moderna mRNA-1273 (n=10) vaccination using a multiplexing Luminex assay. RESULTS: Reduced isotype recognition of the Omicron receptor binding domain was observed following administration of either vaccine with relatively preserved, albeit reduced, recognition of the whole Omicron spike by immunoglobulin M and G antibodies. Despite the near complete loss of Fc receptor binding to the Omicron receptor binding domain, Fc receptor binding to the Omicron spike was more variable but largely preserved. CONCLUSION: Reduced binding titers to the Omicron receptor binding domain aligns with the observed loss of neutralizing activity. Despite the loss of neutralization, preserved, albeit reduced, Omicron spike recognition and Fc receptor binding potentially continue to attenuate disease severity in pregnant women.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Pregnancy , Pregnancy Complications, Infectious/prevention & control , RNA, Messenger , Receptors, Fc , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
4.
Sci Immunol ; : eabp8328, 2022 May 12.
Article in English | MEDLINE | ID: covidwho-1846319

ABSTRACT

Key features of immune memory are greater and faster antigen-specific antibody responses to repeat infection. In the setting of immune-evading viral evolution, it is important to understand how far antibody memory recognition stretches across viral variants when memory cells are recalled to action by repeat invasions. It is also important to understand how immune recall influences longevity of secreted antibody responses. We analyzed SARS-CoV-2 variant recognition, dynamics of memory B cells and secreted antibody over time after infection, vaccination, and boosting. We find that a two-dose SARS-CoV-2 vaccination regimen given after natural infection generated greater longitudinal antibody stability and induced maximal antibody magnitudes with enhanced breadth across Beta, Gamma, Delta and Omicron variants. A homologous 3rd mRNA vaccine dose in COVID-naïve individuals conferred greater cross-variant evenness of neutralization potency with stability that was equal to the hybrid immunity conferred by infection plus vaccination. Within unvaccinated individuals who recovered from COVID, enhanced antibody stability over time was observed within a subgroup of individuals that recovered more quickly from COVID and harbored significantly more memory B cells cross-reactive to endemic coronaviruses early after infection. These cross-reactive clones map to the conserved S2 region of SARS-CoV-2 spike with higher somatic hypermutation levels and greater target affinity. We conclude that SARS-CoV-2 antigen challenge histories in humans influence not only the speed and magnitude of antibody responses, but also functional cross-variant antibody repertoire composition and longevity.

5.
Cell Rep ; 39(4): 110729, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1783229

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional, and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Humans , Mutation/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
6.
Sci Transl Med ; 14(642): eabn9243, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1741565

ABSTRACT

The Omicron variant of SARS-CoV-2 has been shown to evade neutralizing antibodies elicited by vaccination or infection. Despite the global spread of the Omicron variant, even among highly vaccinated populations, death rates have not increased concomitantly. These data suggest that immune mechanisms beyond antibody-mediated virus neutralization may protect against severe disease. In addition to neutralizing pathogens, antibodies contribute to control and clearance of infections through Fc effector mechanisms. Here, we probed the ability of vaccine-induced antibodies to drive Fc effector activity against the Omicron variant using samples from individuals receiving one of three SARS-CoV-2 vaccines. Despite a substantial loss of IgM, IgA, and IgG binding to the Omicron variant receptor binding domain (RBD) in samples from individuals receiving BNT162b2, mRNA-1273, and CoronaVac vaccines, stable binding was maintained against the full-length Omicron Spike protein. Compromised RBD binding IgG was accompanied by a loss of RBD-specific antibody Fcγ receptor (FcγR) binding in samples from individuals who received the CoronaVac vaccine, but RBD-specific FcγR2a and FcγR3a binding was preserved in recipients of mRNA vaccines. Conversely, Spike protein-specific antibodies exhibited persistent but reduced binding to FcγRs across all three vaccines, although higher binding was observed in samples from recipients of mRNA vaccines. This was associated with preservation of FcγR2a and FcγR3a binding antibodies and maintenance of Spike protein-specific antibody-dependent natural killer cell activation. Thus, despite the loss of Omicron neutralization, vaccine-induced Spike protein-specific antibodies continue to drive Fc effector functions, suggesting a capacity for extraneutralizing antibodies to contribute to disease control.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunoglobulin G , RNA, Messenger/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , mRNA Vaccines
7.
Science ; 374(6573): 1353-1360, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1483980

ABSTRACT

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report the structure, function, and antigenicity of its full-length spike (S) trimer as well as those of the Gamma and Kappa variants, and compare their characteristics with the G614, Alpha, and Beta variants. Delta S can fuse membranes more efficiently at low levels of cellular receptor angiotensin converting enzyme 2 (ACE2), and its pseudotyped viruses infect target cells substantially faster than the other five variants, possibly accounting for its heightened transmissibility. Each variant shows different rearrangement of the antigenic surface of the amino-terminal domain of the S protein but only makes produces changes in the receptor binding domain (RBD), making the RBD a better target for therapeutic antibodies.


Subject(s)
Immune Evasion , Membrane Fusion , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antibody Affinity , Antigens, Viral/immunology , Cell Line , Epitopes/immunology , Humans , Models, Molecular , Mutation , Protein Conformation , Protein Domains , Protein Multimerization , Receptors, Coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology
8.
Curr Opin Virol ; 50: 173-182, 2021 10.
Article in English | MEDLINE | ID: covidwho-1415336

ABSTRACT

The COVID-19 (coronavirus disease 2019) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to loss of human life in millions and devastating socio-economic consequences worldwide. The disease has created urgent needs for intervention strategies to control the crisis and meeting these needs requires a deep understanding of the structure-function relationships of viral proteins and relevant host factors. The trimeric spike (S) protein of the virus decorates the viral surface and is an important target for development of diagnostics, therapeutics and vaccines. Rapid progress in the structural biology of SARS-CoV-2 S protein has been made since the early stage of the pandemic, advancing our knowledge on the viral entry process considerably. In this review, we summarize our latest understanding of the structure of the SARS-CoV-2 S protein and discuss the implications for vaccines and therapeutics.


Subject(s)
Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , COVID-19 Vaccines/immunology , Protein Domains , Spike Glycoprotein, Coronavirus/physiology
9.
Biochemistry ; 60(27): 2153-2169, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1387101

ABSTRACT

A central tenet in the design of vaccines is the display of native-like antigens in the elicitation of protective immunity. The abundance of N-linked glycans across the SARS-CoV-2 spike protein is a potential source of heterogeneity among the many different vaccine candidates under investigation. Here, we investigate the glycosylation of recombinant SARS-CoV-2 spike proteins from five different laboratories and compare them against S protein from infectious virus, cultured in Vero cells. We find patterns that are conserved across all samples, and this can be associated with site-specific stalling of glycan maturation that acts as a highly sensitive reporter of protein structure. Molecular dynamics simulations of a fully glycosylated spike support a model of steric restrictions that shape enzymatic processing of the glycans. These results suggest that recombinant spike-based SARS-CoV-2 immunogen glycosylation reproducibly recapitulates signatures of viral glycosylation.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Glycosylation , Humans , Molecular Dynamics Simulation , Protein Binding/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
10.
Cell ; 184(19): 4969-4980.e15, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1333275

ABSTRACT

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.

11.
Science ; 373(6555): 642-648, 2021 08 06.
Article in English | MEDLINE | ID: covidwho-1282051

ABSTRACT

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains in the COVID-19 pandemic. We report here cryo-electron microscopy structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Amino acid substitutions in the B.1.1.7 protein increase both the accessibility of its receptor binding domain and the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement may account for the increased transmissibility. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, making it resistant to some potent neutralizing antibodies. These findings provide structural details on how SARS-CoV-2 has evolved to enhance viral fitness and immune evasion.


Subject(s)
COVID-19/virology , Immune Evasion , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cryoelectron Microscopy , HEK293 Cells , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Domains , Protein Interaction Domains and Motifs , Protein Subunits/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
12.
Science ; 372(6541): 525-530, 2021 04 30.
Article in English | MEDLINE | ID: covidwho-1138286

ABSTRACT

Substitution for aspartic acid (D) by glycine (G) at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears to facilitate rapid viral spread. The G614 strain and its recent variants are now the dominant circulating forms. Here, we report cryo-electron microscopy structures of a full-length G614 S trimer, which adopts three distinct prefusion conformations that differ primarily by the position of one receptor-binding domain. A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer-effectively increasing the number of functional spikes and enhancing infectivity-and to modulate structural rearrangements for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.


Subject(s)
SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19/virology , Cryoelectron Microscopy , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Binding , Protein Conformation , Protein Domains , Protein Subunits/chemistry , Protein Subunits/metabolism , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
13.
Nat Struct Mol Biol ; 28(2): 202-209, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065920

ABSTRACT

Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a membrane-bound carboxypeptidase that forms a dimer and serves as the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 is also a key negative regulator of the renin-angiotensin system that modulates vascular functions. We report here the properties of a trimeric ACE2 ectodomain variant, engineered using a structure-based approach. The trimeric ACE2 variant has a binding affinity of ~60 pM for the spike protein of SARS­CoV­2 (compared with 77 nM for monomeric ACE2 and 12-22 nM for dimeric ACE2 constructs), and its peptidase activity and the ability to block activation of angiotensin II receptor type 1 in the renin-angiotensin system are preserved. Moreover, the engineered ACE2 potently inhibits SARS­CoV­2 infection in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/therapeutic use , Antiviral Agents/therapeutic use , Cryoelectron Microscopy , Humans , Models, Molecular , Protein Engineering , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , SARS-CoV-2/physiology
14.
bioRxiv ; 2020 Oct 20.
Article in English | MEDLINE | ID: covidwho-900758

ABSTRACT

Substitution for aspartic acid by glycine at position 614 in the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing pandemic, appears to facilitate rapid viral spread. The G614 variant has now replaced the D614-carrying virus as the dominant circulating strain. We report here cryo-EM structures of a full-length S trimer carrying G614, which adopts three distinct prefusion conformations differing primarily by the position of one receptor-binding domain (RBD). A loop disordered in the D614 S trimer wedges between domains within a protomer in the G614 spike. This added interaction appears to prevent premature dissociation of the G614 trimer, effectively increasing the number of functional spikes and enhancing infectivity. The loop transition may also modulate structural rearrangements of S protein required for membrane fusion. These findings extend our understanding of viral entry and suggest an improved immunogen for vaccine development.

15.
medRxiv ; 2020 May 02.
Article in English | MEDLINE | ID: covidwho-900732

ABSTRACT

The COVID-19 pandemic continues to infect millions of people worldwide. In order to curb its spread and reduce morbidity and mortality, it is essential to develop sensitive and quantitative methods that identify infected individuals and enable accurate population-wide screening of both past and present infection. Here we show that Single Molecule Array assays detect seroconversion in COVID-19 patients as soon as one day after symptom onset using less than a microliter of blood. This multiplexed assay format allows us to quantitate IgG, IgM and IgA immunoglobulins against four SARS-CoV-2 targets, thereby interrogating 12 antibody isotype-viral protein interactions to give a high resolution profile of the immune response. Using a cohort of samples collected prior to the outbreak as well as samples collected during the pandemic, we demonstrate a sensitivity of 86% and a specificity of 100% during the first week of infection, and 100% sensitivity and specificity thereafter. This assay should become the gold standard for COVID19 serological profiling and will be a valuable tool for answering important questions about the heterogeneity of clinical presentation seen in the ongoing pandemic.

16.
Cell ; 183(6): 1508-1519.e12, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-898562

ABSTRACT

The urgent need for an effective SARS-CoV-2 vaccine has forced development to progress in the absence of well-defined correlates of immunity. While neutralization has been linked to protection against other pathogens, whether neutralization alone will be sufficient to drive protection against SARS-CoV-2 in the broader population remains unclear. Therefore, to fully define protective humoral immunity, we dissected the early evolution of the humoral response in 193 hospitalized individuals ranging from moderate to severe. Although robust IgM and IgA responses evolved in both survivors and non-survivors with severe disease, non-survivors showed attenuated IgG responses, accompanied by compromised Fcɣ receptor binding and Fc effector activity, pointing to deficient humoral development rather than disease-enhancing humoral immunity. In contrast, individuals with moderate disease exhibited delayed responses that ultimately matured. These data highlight distinct humoral trajectories associated with resolution of SARS-CoV-2 infection and the need for early functional humoral immunity.


Subject(s)
COVID-19 , Immunity, Humoral , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Receptors, IgG/immunology , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/mortality , Female , HL-60 Cells , Humans , Male
17.
Cell ; 183(6): 1496-1507.e16, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-898561

ABSTRACT

Antibodies are key immune effectors that confer protection against pathogenic threats. The nature and longevity of the antibody response to SARS-CoV-2 infection are not well defined. We charted longitudinal antibody responses to SARS-CoV-2 in 92 subjects after symptomatic COVID-19. Antibody responses to SARS-CoV-2 are unimodally distributed over a broad range, with symptom severity correlating directly with virus-specific antibody magnitude. Seventy-six subjects followed longitudinally to ∼100 days demonstrated marked heterogeneity in antibody duration dynamics. Virus-specific IgG decayed substantially in most individuals, whereas a distinct subset had stable or increasing antibody levels in the same time frame despite similar initial antibody magnitudes. These individuals with increasing responses recovered rapidly from symptomatic COVID-19 disease, harbored increased somatic mutations in virus-specific memory B cell antibody genes, and had persistent higher frequencies of previously activated CD4+ T cells. These findings illuminate an efficient immune phenotype that connects symptom clearance speed to differential antibody durability dynamics.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , CD4-Positive T-Lymphocytes/immunology , COVID-19 , Immunoglobulin G/immunology , Lymphocyte Activation , Mutation , COVID-19/genetics , COVID-19/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology
18.
Nat Biomed Eng ; 4(12): 1180-1187, 2020 12.
Article in English | MEDLINE | ID: covidwho-780007

ABSTRACT

Sensitive assays are essential for the accurate identification of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we report a multiplexed assay for the fluorescence-based detection of seroconversion in infected individuals from less than 1 µl of blood, and as early as the day of the first positive nucleic acid test after symptom onset. The assay uses dye-encoded antigen-coated beads to quantify the levels of immunoglobulin G (IgG), IgM and IgA antibodies against four SARS-CoV-2 antigens. A logistic regression model trained using samples collected during the pandemic and samples collected from healthy individuals and patients with respiratory infections before the first outbreak of coronavirus disease 2019 (COVID-19) was 99% accurate in the detection of seroconversion in a blinded validation cohort of samples collected before the pandemic and from patients with COVID-19 five or more days after a positive nasopharyngeal test by PCR with reverse transcription. The high-throughput serological profiling of patients with COVID-19 allows for the interrogation of interactions between antibody isotypes and viral proteins, and should help us to understand the heterogeneity of clinical presentations.


Subject(s)
COVID-19/immunology , Immunoassay/methods , Seroconversion/physiology , Aged , Aged, 80 and over , Antibodies/immunology , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/immunology , Sensitivity and Specificity
19.
Cell Host Microbe ; 28(4): 586-601.e6, 2020 10 07.
Article in English | MEDLINE | ID: covidwho-741138

ABSTRACT

The SARS-CoV-2 betacoronavirus uses its highly glycosylated trimeric Spike protein to bind to the cell surface receptor angiotensin converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. We utilized glycomics-informed glycoproteomics to characterize site-specific microheterogeneity of glycosylation for a recombinant trimer Spike mimetic immunogen and for a soluble version of human ACE2. We combined this information with bioinformatics analyses of natural variants and with existing 3D structures of both glycoproteins to generate molecular dynamics simulations of each glycoprotein both alone and interacting with one another. Our results highlight roles for glycans in sterically masking polypeptide epitopes and directly modulating Spike-ACE2 interactions. Furthermore, our results illustrate the impact of viral evolution and divergence on Spike glycosylation, as well as the influence of natural variants on ACE2 receptor glycosylation. Taken together, these data can facilitate immunogen design to achieve antibody neutralization and inform therapeutic strategies to inhibit viral infection.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/enzymology , Coronavirus Infections/virology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/enzymology , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , COVID-19 , Glycosylation , HEK293 Cells , Humans , Molecular Dynamics Simulation , Pandemics , Peptidyl-Dipeptidase A/chemistry , Protein Domains , Protein Interaction Domains and Motifs , Receptors, Virus/chemistry , Receptors, Virus/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
20.
Immunity ; 53(3): 524-532.e4, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-709168

ABSTRACT

As SARS-CoV-2 infections and death counts continue to rise, it remains unclear why some individuals recover from infection, whereas others rapidly progress and die. Although the immunological mechanisms that underlie different clinical trajectories remain poorly defined, pathogen-specific antibodies often point to immunological mechanisms of protection. Here, we profiled SARS-CoV-2-specific humoral responses in a cohort of 22 hospitalized individuals. Despite inter-individual heterogeneity, distinct antibody signatures resolved individuals with different outcomes. Although no differences in SARS-CoV-2-specific IgG levels were observed, spike-specific humoral responses were enriched among convalescent individuals, whereas functional antibody responses to the nucleocapsid were elevated in deceased individuals. Furthermore, this enriched immunodominant spike-specific antibody profile in convalescents was confirmed in a larger validation cohort. These results demonstrate that early antigen-specific and qualitative features of SARS-CoV-2-specific antibodies point to differences in disease trajectory, highlighting the potential importance of functional antigen-specific humoral immunity to guide patient care and vaccine development.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Nucleocapsid Proteins/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/blood , Coronavirus Nucleocapsid Proteins , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/blood , Male , Middle Aged , Pandemics , Phosphoproteins , Pneumonia, Viral/blood , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL